Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation.

نویسندگان

  • M Roselle Abraham
  • Charles A Henrikson
  • Leslie Tung
  • Marvin G Chang
  • Miguel Aon
  • Tian Xue
  • Ronald A Li
  • Brian O' Rourke
  • Eduardo Marbán
چکیده

Skeletal myoblasts are an attractive cell type for transplantation because they are autologous and resistant to ischemia. However, clinical trials of myoblast transplantation in heart failure have been plagued by ventricular tachyarrhythmias and sudden cardiac death. The pathogenesis of these arrhythmias is poorly understood, but may be related to the fact that skeletal muscle cells, unlike heart cells, are electrically isolated by the absence of gap junctions. Using a novel in vitro model of myoblast transplantation in cardiomyocyte monolayers, we investigated the mechanisms of transplant-associated arrhythmias. Cocultures of human skeletal myoblasts and rat cardiomyocytes resulted in reentrant arrhythmias (spiral waves) that reproduce the features of ventricular tachycardia seen in patients receiving myoblast transplants. These arrhythmias could be terminated by nitrendipine, an l-type calcium channel blocker, but not by the Na channel blocker lidocaine. Genetic modification of myoblasts to express the gap junction protein connexin43 decreased arrhythmogenicity in cocultures, suggesting a specific means for increasing the safety (and perhaps the efficacy) of myoblast transplantation in patients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transplantation of HGF gene-engineered skeletal myoblasts improve infarction recovery in a rat myocardial ischemia model

BACKGROUND Skeletal myoblast transplantation seems a promising approach for the repair of myocardial infarction (MI). However, the low engraftment efficacy and impaired angiogenic ability limit the clinical efficiency of the myoblasts. Gene engineering with angiogenic growth factors promotes angiogenesis and enhances engraftment of transplanted skeletal myoblasts, leading to improved infarction...

متن کامل

Overexpression of connexin 43 using a retroviral vector improves electrical coupling of skeletal myoblasts with cardiac myocytes in vitro

BACKGROUND Organ transplantation is presently often the only available option to repair a damaged heart. As heart donors are scarce, engineering of cardiac grafts from autologous skeletal myoblasts is a promising novel therapeutic strategy. The functionality of skeletal muscle cells in the heart milieu is, however, limited because of their inability to integrate electrically and mechanically in...

متن کامل

Myocyte transplantation for myocardial repair: a few good cells can mend a broken heart.

Cell transplantation is a potential therapeutic approach for patients with chronic myocardial failure. Experimental transplantation of neonatal and fetal cardiac myocytes showed that the grafted cells can functionally integrate with and augment the function of the recipient heart. Clinical application of this approach will be limited by shortage of donors, chronic rejection, and because it is e...

متن کامل

Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host.

Survival and differentiation of myogenic cells grafted into infarcted myocardium have raised the hope that cell transplantation becomes a new therapy for cardiovascular diseases. The approach was further supported by transplantation of skeletal myoblasts, which was shown to improve cardiac performance in several animal species. Despite the success of myoblast transplantation and its recent tria...

متن کامل

Increased Angiogenesis and Improved Left Ventricular Function after Transplantation of Myoblasts Lacking the MyoD Gene into Infarcted Myocardium

Skeletal myoblast transplantation has therapeutic potential for repairing damaged heart. However, the optimal conditions for this transplantation are still unclear. Recently, we demonstrated that satellite cell-derived myoblasts lacking the MyoD gene (MyoD(-/-)), a master transcription factor for skeletal muscle myogenesis, display increased survival and engraftment compared to wild-type contro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 97 2  شماره 

صفحات  -

تاریخ انتشار 2005